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LETTER TO THE EDITOR 
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exponent of Bernoulli trials of matrices 
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$ Dipartimento di Fisica dell’Universita ‘La Sapienza’, Piazzale le Aldo Moro 2, 1-00185 
Roma, Italy and GNSM-CISM Unita di Roma, Italy 

Received 17 December 1987 

Abstract. We consider the infinite products of d x d random matrices X ,  which are taken 
according to a Bernoulli distribution (i.e. X ,  = A  with probability (1 - p )  and X ,  = €3 with 
probability p ) .  The maximum Lyapunov exponent is estimated by selecting a suitable 
periodic sequence. We can thus limit ourselves to compute the eigenvalues of one particular 
matrix which is obtained as afinite product of matrices A and B. We also discuss the cases 
in which the method fails because of fluctuation effects. 

The product of random matrices has a great importance in the study of disordered 
systems (see, e.g., Derrida and Gardner 1984, Paladin and Vulpiani 1987) as well as 
in the theory of dynamical systems (Benettin 1984, Paladin and Vulpiani 1986, Livi er 
a1 1987a, b). The calculation of the Lyapunov characteristic exponents, LCE, is one 
of the main problems that arises when considering these products. 

The knowledge of the LCE in fact allows one to obtain the physical quantities (e.g. 
free energy and correlation length in statistical mechanics system (De Calan er a1 
1985), localisation length and density of state in the localisation problem (Derrida and 
Gardner 1984)) via the transfer matrix method. On the other hand, the maximal LCE 

measures the global degree of chaoticity in dynamical systems since it gives an estimate 
of the typical time on which the memory of the initial conditions is loose (Benettin 
1984, Paladin and Vulpiani 1986, Livi er a1 1987a, b). 

In this letter, we consider the product of real d x d random matrices Xi which are 
Bernoulli distributed, i.e. Xi = A with probability (1 - p )  and Xi = B with probability 
p .  The maximal LCE y ( p )  is defined as 

where 
N 

M N = n x i  (2) 
1 = 1  

and z (0)  E RD is a generical vector. 

and does not depend on z (0)  with probability 1 (Oseledec 1968). 
It can be proved that the limit (1) exists for almost all matrices M N  given by (2) 
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Our purpose is to estimate y ( p )  by a simple method which takes account of the 
non-commutative nature of our 'coin-tossing' process. A naive approximation, in 
analogy with the scalar case, is 

where yA = y( p = 0) and ys = y (  p = 1) are the logarithms of the modulus of the largest 
eigenvalue of A and B. Note that [A ,  B ]  = 0 is not sufficient for (3)  to be valid; one 
also needs the eigenvectors of A and B corresponding to the most expansive directions 
not to be orthogonal. On the other hand, there are no generical methods to find y(  p ) ,  
even if perturbative expansions in p can work in a lot of particular cases. 

Let us now remark that in the limit of large N the number nA of matrices A in the 
product M ,  is given by the large number law: 

n , = ( 1  - p ) N + O ( N " 2 ) .  (4) 

This means that among all the possible sequences {Xi} i=l , . . . , ,  only the class of those 
with nA = (1 - p ) N  gives a relevant contribution to the calculation of y (  p )  while the 
class of remaining sequences has vanishing probability in the limit N + m .  This 
observation does not simplify our problem too much but indicates how to pick up a 
typical sequence. If we neglect the fluctuation role, we can try to look for a periodic 
sequence in the first relevant class, so that the calculation of y ( p )  is reduced to the 
calculation of the maximal eigenvalue of a particular matrix. Let us choose for 
simplicity p = l / ( n  + l) ,  with n = 1,2,. . . . In this case, the smallest period length for 
which nA = N (  1 - p )  is n + 1 and the 'mean-field' typical sequence will be 

It is quite easy to find a generalisation of the sequence ( 5 )  if p = m / [ ( n  + 1)m + 11 with 
n and m integer. One obtains 

In the following we shall, however, only consider sequences of the kind ( 5 ) .  
Let us also note that the maximal LCE of sequences (5) is invariant under cyclic 

permutations (A"-'BA', with i = 0, 1,. . . , n )  even if the whole spectrum of LCE cannot 
be invariant for d > 2. 

Nevertheless the minimal LCE of the sequences ( 5 )  is also invariant under cyclic 
permutations, since when considering the product of matrices A-' and B-' it, of course, 
becomes the maximum LCE. It follows that all our arguments will be valid for the 
minimal LCE as well as the maximal one if det A and det B do not vanish. 

Now let us estimate y ( p )  by the sequence (5): 

where I , (A"B)  is the largest eigenvalue of A"B. Of course, for 
consider sequences of the form (B"A)? Let us stress that the 

p > O S  we have to 
approximation ( 6 )  
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becomes exact (i.e. y = A , )  if [ A ,  B ]  = 0. In principle it is possible to improve ( 6 )  by 
a second-order approximation A,( p )  given by the 2( n + 1 )  length products: 

In (7) ,  we have to compute the maximum eigenvalues of n + 1 matrices and further 
approximations of order K become very complicated for n > 2 (i.e. p < 0.25). This 
systematic way to obtain y ( p )  is not our goal, since we do not want to find a good 
trick for performing perturbative expansions in p ,  but just a simple way to give a rough 
estimate of y (  p ) .  Let us therefore begin to discuss our approximation for 2 x 2 matrices. 
We shall consider p < 0.5 and a reference frame where the matrix A is diagonal without 
loss of generality. We thus get three cases: real non-degenerate eigenvalues 1, > l,, 
real degenerate eigenvalues I ,  = I ,  and complex conjugate eigenvalues I ,  = 1:. 

(i)  Non-degenerate real eigenvalues I , >  1 2 .  This case contains all the one- 
dimensional statistical mechanics with 'Bernoulli' disorder and finite-range interactions. 
In fact, a theorem of Frobenius (Gantmacher 1964) ensures that the maximum eigen- 
value of a finite d x d matrix with positive elements is strictly non-degenerate. We 
have, for instance, considered the Ising model with a site random field hi = h with 
probability p and hi = 0 otherwise. The calculation of the partition function can be 
done via the calculation of the maximum LCE of the random product of two transfer 
matrices (De Calan et a1 1985). The agreement between the numerical estimates of 
y (  p )  and A , (  p )  is rather good for all p and not too small temperatures (the percentage 
error is -1%). Moreover the 'scalar' estimate (3) also works well. 

Now let us consider the most general case: 

with a, p, y, 6 # 0. It is easy to verify that, for large n, one gets 

This result corresponds to the first-order term of the perturbative expansion in p .  
Actually, at second order in p one has (Derrida 1987) 

We thus see that the error of our estimate is of order O ( p 2 ) .  Figure 1 shows A , ( p )  
and y ( p )  for the product of symplectic matrices which are relevant for the study of 
dynamical systems (Paladin and Vulpiani 1987, Benettin 1984): 

B = ( '  b l + b  ) 
with a, b SZ [-2,0] in order to have real non-degenerate eigenvalues. Let us note that, 
for a = 0.8 and b = -4.9, A I (  p = 0.5) improves the first-order expansion in p by about 
25% while, for a = 5 and b = -4.9, A I (  p )  corresponds to the first-order term of the p 
expansion, which however is quite a good estimate of y ( p )  for all p .  
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Figure 1. y ( * )  and A,(.) plotted against p for matrices of the form ( 1  1 ). ( a )  a = 5 ,  b = -4.9. 
( b )  a = 0.8, b = -4.9. The full line indicates the trivial approximation (3), the broken lines 
show the first-order term of the perturbative expansion in p (10). 

( i i )  Degenerate real eigenvalues I, = I,. We can always consider a basis where the 
matrix A is triangular: 

A = ( o  1 w  l ) l l .  

In particular, let us consider w = 1 and a matrix B of the form 

B = ( ’  ) b>O 
b l + b  

for recovering the product of symplectic matrices (1 1) with U = 0. 
All our arguments can, however, be generalised to w # 1. 
An interesting case is obtained for Ill/ = 1 where one has 

A , ( P )  = (bP)”*+O(bP).  
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On the other hand, the ‘scalar estimate’ ( 3 )  would give a LCE = pdb. The difference 
is made evident in figure 2. Let us note that our approximation therefore holds even 
if dy/dpl,=,=m so that the standard pertubative expansion in p (10) fails. 

Actually, for the products of A and B given by (12) and (13) it can be shown 
(Parisi and Vulpiani 1986) that h , ( p )  is equal to the generalised Lyapunov exponent 
L(1) defined as (Benzi et a1 1985) 

where ( ) is the average over the different realisations of the Bernoulli trials. Indeed, 
in general, L( 1 )  L y and L( 1)  = y only if fluctuations of the Lyapunov exponent 
computed on finite N products around y are negligible. 

(iii) Complex conjugate eigenvalues. In this case our method may be useless since 
it neglects the fluctuations. Indeed, fluctuations could sometimes become so relevant 
that periodical mean-field estimates make no sense. As a typical example let us consider 
matrices of the form: 

where V, = V, with probability ( 1  - p )  and V, = V, with probability p .  The product 
M N  is thus related to the Schrodinger equation on a one-dimensional lattice: I),+, + 
I ) l - ,  = ( E  - V,)+, written in a recursive form. 

The maximum LCE is the inverse of the localisation length of the eigenfunction 
{I),, I)z,. . . , JIN),i.e.I$,I-l+,( exp(-ylil)where+,isthemaximumofthewavefunction 
and )il is large enough. 

The eigenvalues of (16) are not real for I E - V, < 2 and let us note that for pure 
systems (i.e. p = 0 or 1,  VI = V constant) the energy band is just IE - VI s 2. It is well 
known that the eigenstates are always localised if p # 0 or p # 1 while they are extended 

I 0.2 

1 I I I 
0 0.2 0.4 0.6 

6 
Figure 2. y(*) and A,(.) plotted against v’p for matrices ( 1  1 )  with a = 0, b = 0.1; the full 
curve indicates the trivial approximation ( 3 ) .  
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(i.e. y = 0) for any periodical potential (Ishii 1973, Carmona et a1 1987). It follows 
that A , ( p )  = ( n + l ) - '  lnll,(A"B)I vanishes for energies inside the band of the pure 
system. On the other hand, y (  p )  > 0 since disorder localises the wavefunction. It is 
therefore evident that any periodical approximation has to fail. The same kind of 
problem is present for the matrices (1 1) with a, b E 1-2,0[. Let us remark that troubles 
also arise in perturbative calculations (Derrida et al 1987, Martinelli and  Micheli 1987) 
of the LCE for energies inside the band. Roughly speaking, we can see the origin of 
the difficulties in the fact that matrices A and B are neither expanding nor contracting. 
The finite value of y ( p )  is fully due  to fluctuations. Nevertheless, if at  least one of 
the two matrices is expanding, the approximation A , (  p )  still gives reasonable results, 
as shown in figure 3. 

0.15 t 

0.10 

0.05 

P 

Figure 3. y ( * )  and A,(.) plotted against p for matrices of the form (16) with E = 2 ,  
V, =0.1, V, = -0.2; the full line indicates the trivial approximation ( 3 ) .  

For our  purpose 2 x 2 matrices involve all the complexities of d x d matrices in 
practice. Let us, for example, consider a generalisation of (11): 

A = ( n  ) ) 
54 U + &  a n+a 

where U is the d x d unit matrix and  si?, 3 are d x d symmetric matrices. If each 
element of 54 and 93 is non-negative the mean-field approximation (6) works without 
problem (see figure 4) while if some elements of si? and/or 93 are negative it might 
happen that approximation (6) is not satisfactory enough. 

Finally, we have investigated the large-d limit in generical matrices without a 
particular structure in order to see if the fluctuation effects become negligible. In this 
case our mean-field approximation should be exact for d +W.  Indeed, we have checked 
that, already for d 3 4, A , (  p )  is practically equal to y ( p )  for matrices of the form: 
A,, = C,a, and B,, = Cspv, where aU and p,, are numbers extracted at random in the 
interval [ - I ,  I ]  according to a uniform probability distribution. Moreover, for these 
matrices A , ( p )  does not differ by the naive 'scalar' approximation (3) .  Nevertheless 
this last feature is not generic: for example, we have found that for symmetric A and 
B with elements which are independent Gaussian random variables, (3)  fails to estimate 
y (  p )  in the limit d + 0, while our mean-field approximation (6) becomes very accurate. 
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Figure 4. y ( * )  and A,(.) plotted against p for matrices of the form (17) with 
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The full  line is the trivial approximation (3). 

Let us also remark that the difference between the LCE and the generalised Lyapunov 
exponent L(1) defined in ( 5 )  vanishes as d increases, supporting the idea that fluctu- 
ations become irrelevant in large ‘typical’ matrices. 

In conclusion we have tried to overcome the difficulties inherent to the non- 
commutative nature of Bernoulli trials of matrices. The mean-field-like estimate of the 
maximum LCE is remarkable for its simplicity and because no other general methods 
exist, as far as we know. It allows us to take account of only one particular periodic 
sequence, neglecting the order of the trial results in the infinite product of matrices. 
Moreover we have stressed the cases in which fluctuations become so relevant that 
any finite-periodic approximation is useless, as in the localisation problem. It is also 
pointed out that, for matrices without particular structure, fluctuations become negli- 
gible and the LCE can be well approximated by our method in the limit of large matrix 
size. 

We are deeply indebted to B Derrida for having communicated to us his unpublished 
results and for useful discussions. We also want to thank R Lima, R Livi, F Martinelli, 
M Mezard and  S Ruffo for fruitful suggestions and remarks. 
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